Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR
نویسندگان
چکیده
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1' and C5' with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg(2+) ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly (13)C/(15)N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive (13)C-(13)C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.
منابع مشابه
Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli...
متن کاملSelective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle
Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on (13)C-2-glycerol and (13)C-1,3-glycerol e...
متن کاملAccurate measurement of 15N-13C residual dipolar couplings in nucleic acids.
New 3D HCN quantitative J (QJ) pulse schemes are presented for the precise and accurate measurement of one-bond 15N1/9-13C1', 15N1/9-13C6/8, and 15N1/9-13C2/4 residual dipolar couplings (RDCs) in weakly aligned nucleic acids. The methods employ 1H-13C multiple quantum (MQ) coherence or TROSY-type pulse sequences for optimal resolution and sensitivity. RDCs are obtained from the intensity ratio ...
متن کاملHeteronuclear 3D NMR and isotopic labeling of calmodulin. Towards the complete assignment of the 1H NMR spectrum.
New methods are described that permit detailed analysis of the NMR spectra of calmodulin, an alpha-helical protein with a molecular weight of 16.7 kD. Two complementary approaches have been used: uniform labeling with 15N and labeling of specific amino acids with either 15N or 13C. It is demonstrated that uniform 15N labeling permits the recording of sensitive three-dimensional (3D) NMR spectra...
متن کاملA method for efficient isotopic labeling of recombinant proteins.
A rapid and efficient approach for preparing isotopically labeled recombinant proteins is presented. The method is demonstrated for 13C labeling of the C-terminal domain of angiopoietin-2, 15N labeling of ubiquitin and for 2H/13C/15N labeling of the Escherichia coli outer-membrane lipoprotein Lpp-56. The production method generates cell mass using unlabeled rich media followed by exchange into ...
متن کامل